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sition metal ions in CP acetic acid. In a series of “non-Fe” titra- 
tions, 3 to 4% of the peroxy ester reacted in 5 min. On this basis, 
concentrations of hydroperoxide and peroxy ester were corrected 
as follows. The approximate peroxy ester concentration obtained 
from the difference in titers for “non-Fe” and “Fe” titrations, was 
multiplied by 1.03 to  give the corrected peroxy ester concentration. 
This value was then subtracted from the total peroxide concentra- 
tion (based on “Fe” titration) to give the corrected hydroperoxide 
concentration. Corrected values are listed in Table I.i 

Reaction of tert -Butyl Hydroperoxide wi th  Acetic Acid. 
Reaction mixtures were formulated by weight into volumetric 
flasks and were conducted in half-filled* glass-stoppered flasks 
maintained a t  30 f 0.1’ in a thermostat. Except for expt 1, total 
peroxide concentration remained constant during the course of 
reaction. In Experiments 2-6, sulfuric acid catalyst, diluted 5050 
with acetic acid, was added just prior to or just after the initial ti- 
tration. 

tert -Butyl peroxyacetate was isolated from final reaction 
mixtures of expt 1 and 2 as follows. Water (400 ml) was added to  a 
100-ml aliquot and the solution was extracted with 70 ml of diethyl 
ether and then with 30 ml of 30-60° petroleum ether. Combined 
extracts were washed sequentially with 50 ml of 10% NagC03 solu- 
tion, 25 ml of 10% Na2C03 solution, and 50 ml of water. After 
drying with MgS04, solvents were removed and the residue was 
distilled under reduced pressure, peroxy ester being collected a t  
29-30’ (5 mm), n2’D 1.4030 (1it.j 1.4035). peroxide assay 96.8%. 
Recovery was about 60% of the theoretical amount of peroxy ester 
in the aliquots. 

Prepara t ion  of tert -Butyl Pezoxyacetate. A catalytic amount 
(0.4 g) of postassium acetate was added to a water-cooled stirred 
solution of tert -butyl hydroperoxide (14.1 g, 96% assay, 0.15 mol) 
and acetic anhydride (20 g, 0.196 mol, 30% excess) in 20 ml of 30- 
60” petroleum ether. Reaction was mildly exothermic. After stand- 
ing overnight a t  room temperature, the reaction mixture was dilut- 
ed with 80 ml of 30-60’ petroleum ether, washed successively with 
100 ml of water, 50 ml of 10% Na2C03 solution, and 50 ml of water, 
dried with MgS04, and distilled under reduced pressure. Peroxy 
ester was collected at  30-30.5’ (5 mm), yield 14.6 g (73%), peroxide 
assay 98.4%. The nmr spectrum agreed with literature data.j 

Reaction of a-Cumyl Hydroperoxide with Acetic Acid. 
When a 0.984 M solution of a-cumyl hydroperoxide in glacial ace- 
tic acid was maintained a t  30. f 0.1’, the hydroperoxide concen- 
tration slowly decreased. “Non-Fe” and “Fe” titers were identical, 
indicating the absence of peroxy ester. Pseudo-first-order kinetics 
were observed at  least up to 30% reaction. The rate constant, ob- 
tained graphically, was 6.3 f 0.3 X sec-l. As the reaction pro- 
ceeded, the solution became yellow in color and finally yellowish 
brown and the odor of phenol was apparent during titrations. A 
similar reaction mixture, but 0.035 M in potassium acetate (in an 
attempt to reduce solution acidity), gave similar results. We as- 
sume the development of color was the result of oxidation of phe- 
nol to quinoidal products by the hydroperoxide. (Similar colors 
were observed when a solution of phenol and tert-butyl hydro- 
peroxide in acetic acid was let stand a t  room temperature.) The 
presence of phenol in the reaction mixture was established by 
making an aliquot basic with sodium hydroxide, extracting several 
times with ether to remove a-cumyl hydroperoxide, acidifying with 
acetic acid, and treating with bromine followed by sodium bisulfite 
in the usual manner. The  product, 2,4,6-tribromophenol (mp 
95.5O), was obtained in 58% yield, based on hydroperoxide reacted. 

Prepara t ion  of a-Cumyl Peroxyacetate.  A catalytic amount 
(0.2 g) of potassium acetate was added to a cooled stirred solution 
of cu-cumyl hydroperoxide (16.0 g, 95% assay, 0.1 mol) and acetic 
anhydride (12.8 g, 0.125 mol) in 40 ml of 38-50’ petroleum ether. 
The reaction was stirred a t  room temperature until the potassium 
acetate dissolved and then let stand at  room temperature for 1 hr. 
(Reaction time was limited to minimize decomposition of the per- 
oxy ester in the presence of acetic acid.) Product work-up was sim- 
ilar to that described for tert -butyl peroxyacetate. Peroxy ester 
was collected at  54-57’ (0.1 mm), yield 15.5 g (SO%), peroxide 
assay 92%. Redistillation at  56-57’ (0.1 mm) or a t  48-49’ (0.05 
mm) gave a somewhat purer product (peroxide assay 94%), nmr 
(CC14) 6 1.58 [s, 6, (CH3)2], 1.75 (s, 3, CH3CO), 7.3 (m, 5, C ~ H S ) . ~  

A 0.195 M solution of a-cumyl peroxyacetate in acetic acid at  30 
f 0.1.” decomposed smoothly, following first-order kinetics up to 
a t  least 50% reaction. The rate constant was 4.5 f 0.05 X lo-& 
sec-’, confirming results of Yablokov and coworkers.* 

Registry No.-tert- Butyl hydroperoxide, 75-91-2; acetic acid, 
64-19-7; tert -butyl peroxyacetate, 107-71-1; a-cumyl hydroperox- 

ide, 80-15-9; 2,4,6-tribromophenol, 118-79-6; a-cumyl peroxyace- 
tate, 34236-39-0. 
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Compounds of type 1 where R’ is alkyl are well known 
and routes to their synthesis are established,2 but com- 
pounds where R’ is aryl are unreported. An a-phenoxyalkyl 
hydroperoxide has been proposed3 as a possible int,ermedi- 
ate in various enzyme-catalyzed hydroxylations of phenols. 
The synthesis and study of the thermal reactivity of a 
model compound 2 [a- (p- ter t -  butylphenoxy1)ethyl hydro- 
peroxide] was undertaken to test the plausibility of such an 
intermediate. 
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Synthetic attempts, employing the in s i t u  t r app ing  by 
p- ter t -  butylpheno14 of carbonyl oxides formed during the 
ozonolysis of various alkenes (2,3-dimethyl-2-butene, 2- 
ethyl-1-butene, 1,l-diphenylethylene, a-methylstyrene, 
and methylenecyclohexane), yield little or no peroxidic ma- 
terial which can be attributed to a compound such as 2. 
Similar attempts to trap the carbonyl oxides from t rans-  
1,4-dibenzoylethylene and 2-ethylidenecyclohexanone are 
unproductive in yielding in these cases a-keto-a-phenoxy- 
alkyl hydroperoxides. The results indicate that phenols 
(dissolved in inert solvents) unlike alcohols (normally em- 
ployed as solvents) do not efficiently trap carbonyl oxides.5 

The acid-catalyzed addition of 98% hydrogen peroxide to 
p- ter t -  butylphenyl vinyl ether did produce compound 2 in 
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yields of 15-20% (depending upon exact conditions). Under 
the moderately long reaction times required significant 
amounts of parent phenol, apparently formed by hydrolysis 
of the vinyl ether or hydroperoxide, are observed. An at- 
tempted synthesis of 2 using 50% hydrogen peroxide and 
the conditions of Milas, et al., 8 yielded none of the desired 
hydroperoxide, but under more rigorous reaction condi- 
tions, Le., temperatures of ca. 50', traces of 2 are indicated 
along with large amounts of parent phenol. 

A requirement for the proposed mechanism3 for enzymic 
orthohydroxylations is that  compounds like 2 undergo a 
facile "Cope-type" rearrangement as shown in eq 1. Ther- 
modynamic calculations, using the method of group addi- 

J 

2 

+ CH,CHO (1) 

G O H  OH 

t i ~ i t y , ~  indicate that the first step of eq 1 is exothermic by 
a t  least 70 kcal/mol. However, it was observed that com- 
pound 2 in a variety of solvents fails to thermally (80-175') 
rearrange to give any detectable catechol or catechol-de- 
rived products (limits of detection are 1-2% reaction). 
Analyses via tlc indicate that in every case the major de- 
composition product of compound 2 is the parent phenol 
with traces of three minor products also noted. Control ex- 
periments show that the catechol and 0- quinone products 
are readily detectable (see Experimental Section) and that 
under the reaction conditions p-tert- butyl catechol is con- 
verted to p-tert- butyl-o- quinone which is stable and reacts 
no further. 

The catalytic effect of vanadium(1V) on this rearrange- 
ment was investigated since certain transition metals, par- 
ticularly vanadium, chromium, tungsten, and molybde- 
num, are efficient catalysts for the presumably electrophil- 
ic transfer of oxygen from alkyl hydroperoxides to ole- 
fins.10-12 Product distributions from these reactions are 
very similar to those cited above except that  ca. 2-3% of a 
quinone-like material is now observed. Mass spectral anal- 
ysis shows that this material is not the expected 0-  quinone 
but suggests it to be a quinone formed by the dimerization 
of reaction products. A similar product distribution is ob- 
served when tert- butyl hydroperoxide and p-tert- butyl- 
phenol are reacted under similar conditions in the presence 
of vanadium. Thus, the small amount of observed quinone 
obtained from 2 is apparently formed by an intermolecular 
process. 

These results demonstrate that the anticipated "Cope- 
type" rearrangement of compounds such as 2 does not 
occur readily and, therefore, this type of step in the pro- 
posed enzyme mechanism3 for the ortho-hydroxylation of 
phenols is questionable. This does not, however, invalidate 
the possibility that carbonyl oxides (such as "vinylogous 
  zone''^) are the oxidizing agents which hydroxylate the 
substrates by a pathway not involving an intermediate like 
2 in various enzymic reactions.13 

Experimental Section 
(I) Ozonolysis Experiments. Solutions (usually a t  O " ,  although 

some experiments were performed a t  -78' and a t  room tempera- 
ture) of p-tert-  butylphenol (0.66 M )  and alkene (0.33 M )  in meth- 
ylene chloride were treated with a stoichiometric amount of ozone. 

Table I 
Conditions Required for Essentially Complete 

Thermal Decomposition of 2 

- 
Solvent Temp, 'C Time, hr 

Without V( IV) Benzene 
Water 
1- Butanol 
Nitromethane 
DMF 
Diglyme 
$-Dioxane 
%-Octane 
12- Dodecane 

With MV(IV) Benzene 
12-Octane 

Upon warming the solutions to room 

80 > 24 
100 -2 
100 -2 
100 -5 
100 -0 .5  
100,150 >0.5 
100 > 4  
100,125 >48  
150,175 -2 

80 -1 
80 -2 

temperature, product 
mjxtures were analyzed uia tlc (80:20 hexane-ether) on silica gel 
containing an ultraviolet indicator. Aromatic compounds were ob- 
served under ultraviolet light (254 nm) and peroxidic materials 
were detected by spraying plates with a 1% solution of KI. Com- 
pounds of interest were those aromatic in nature exhibiting a 
strong rapid peroxidic activity. 

(11) Catalyzed Addition of Hydrogen Peroxide to p-tert- 
Butylphenyl Vinyl Ether. The reaction of an excess of potassium 
tert- butoxide with 0-bromo-p-tert- butylphenetole1*J5 in ter t -  
butyl alcohol gives p-tert  -butylphenyl vinyl ether (78%).16 To a 
stirring solution of 5 ml of anhydrous ether and 0.2 ml (8.7 mmol) 
of 98% hydrogen peroxidel: (kindly supplied by FMC Corporation) 
in a moisture-protected vial a t  -45' was added dropwise 1.1 ml 
(5.7 mmol) of p-tert-  butylphenyl vinyl ether; 5 ml of anhydrous 
ether which contained 1.5 ~1 of concentrated sulfuric acid was then 
added over a 15-min period; the system was allowed to warm to 
room temperature and remain as such with stirring for 45 hr. Tlc 
as in (I) showed the presence of compound 2 (Rf 0.41-0.43). The 
ethereal solution was washed with saturated (NH4)2S04 solution 
and saturated NaCl solution, dried (MgSOd), and finally purified 
uia silica gel chromatography (80:20 hexane-ether) giving after 
vacuum drying 0.171 g (22% based on an 80% reaction of vinyl 
ether) as a clear viscous oil a-(p-tert- buty1phenoxy)ethyl hydro- 
peroxide (2): uv max (95% C2H5OH) 273 nm ( e  8900); ir (CC14) 840 
(0-0) and 3350-3550 cm-l (00-H) ;  nmr (DCC13) 6 1.28 (s, 9, 

CHB-CH), 7.11 (m, 4, aromatic H's), and 8.65 ppm (s, 1, OOH); ac- 
tive oxygen content,ls 7.7%. (calcd, 7.6%). Anal. Calcd for 
C12H1803: C, 68.54; H ,  8.63; 0, 22.83. Found: C, 68.35; H,  8.81; 0, 
22.64. 

(111) Thermal Studies. (a) Solutions of 2 (0.05 M )  in the fol- 
lowing solvents (HzO, 1-butanol, nitromethane, DMF, diglyme, 
benzene, p -  dixoane, n- octane, and n-dodecane) were heated under 
a Nz atmosphere at  or near reflux. Aliquots us. time were analyzed 
as in (I) for loss of hydroperoxide and formation of p-tert- butyl- 
catechol (detected by 1% FeC13/1% K3Fe(CN)e spray; dark blue 
color development) and/or p-tert-  butyl-0-quinone (detected by 
characteristic pale yellow color). (b) To solutions as above (either 
benzene or n- octane) was added enough vanadium (as VO(ACAC)~ 
in benzene) to make each M in V(1V). Solutions were heated 
to 80' and analyzed as in (a). (c) Similar solutions of V(1V) in n- 
octane were prepared with tert- butyl hydroperoxide (0.05 M )  and 
p-tert-  butylphenol (0.05 M) in place of 2 and were treated as in 
(b). Table I summarizes the time required for essentially complete 
thermal decomposition of 2 under the various conditions. 

Registry No.-2, 52827-71-1; p-tert-  butylphenol, 98-54-4; hy- 
drogen peroxide, 7722-84-1; p-tert  -butylphenyl vinyl ether, 
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Prompted by the recent reports of Hatem and Waegell 
on the stereoselectivities of 1-halocyclopropyl radicals gen- 
erated by halogen abstraction from g e m  -dihalocyclopro- 
panes,l we report on the unique behavior of exo-tricy- 
~lo[3.2.1.0~~~]octan-3-yl radical intermediates. Our original 
interest in replacing the chloro substituent in anti -3- 
chloro-exo -tricyclo~3.2.1.02~4]octane ( la)2 with deuterium 

x 

la, X = C1 
b , X = B r  

2a, X = D Y = H 
b . X = H  Y = D  

was stimulated by the need for development of a method 
for syn and anti C-3  deuterium placement on this ring sys- 
tem in connection with a different mechanistic study; how- 
ever, initial experiments revealed that the chemistry of re- 
placement of chloro by deuterio by treatment of la  with al- 
kali metals in deuterated solvents is of considerable intrin- 
sic interest, allowing one to view the steric interaction in 
anti I and syn  -tricyclooctyl radicals 3 and 4. Treatment of 
anti -3-chlorotricyclooctane ( la)  with sodium in t e r t -  butyl 
alcohol-0-d-tetrahydrofuran generated tricyclooctane 2 
with a syn C - 3  deuterio:anti C-3  deuterio ratio (2a:2b) of 
2.11 i. 0.05. Similar results were obtained when la was al- 
lowed to react with potassium or lithium in t e r t -  butyl alco- 
hol-0-d-THF or with lithium in diethyl ether followed by 
deuterolysis (Table I). Since it is plausible that alkyl ha- 

Table I 
Reduction of Halotricyclooctanes la  and lb  

2a:Zb Reagent and Conditions Run Halide 

1 la  Na I t  -BuOD-THF, 2.11 i 0.05 

2 la  
reflux 

1.25 K// -BuOD-THF, reflux 
3 la  Li// -BuOD-THF, 1.70 

reflux 
4 la (1) L i ,  Et,O. O",  (2)  D,O 
5 l b  (1) n-BuLi,  Et,O, 0" 50.06 

2 .1  * 0.3 

(2)  DzO 

(2)  D@ 

(2)  0". (3) D,O 

6 la (1) LiNaph, THF, - 7 8 " ,  2100: 1 

7 la (1) LiNaph, THF,  -78', 230:  1 

lides react with alkali metals in one-electron p rocesse~ ,~  
and since it is established that cyclopropyllithium deriva- 
t i v e ~ ~  maintain configuration under moderate reaction con- 
ditions, it  seems reasonable to suggest that  the stereochem- 
istry of replacement of chloro by deuterio is determined ac- 
cording to  the sequence of steps outlined in Scheme I. 

Scheme I 

3 p1 
H 

4 

M 

5 6 

This scheme explains the stereoselectivity in terms of (a) 
the preequilibrium of radicals created in the initial one 
electron transfer step, (b) the rate of trapping of the initial- 
ly formed radical 3, and (c) equilibration of the organome- 
tallics 5 and 6. Reinforcement for the view that the anti-  
cyclopropyllithiurn substrate, once formed, is configura- 
tionally stable, was obtained by treatment of bromotricy- 
clooctane 1 b with n -butyllithium, followed by deuterolysis, 
which afforded entirely anti -3-deuterio-exo- 
tricycl0[3.2.1.0~,~]0ctane with no detectable quantity of 
syn-3-deuterio substrate (Table I). The generation of a cy- 
clopropyllithium substrate with retention of configuration 
would bc anticipated by analogy to similar  reaction^.^^-^ 

At this point an attractive, alternative approach to the 
generation of cyclopropyl radicals 3 and 4 and then eyclo- 
propyllithiuni reagents under conditions which would pre- 
vent epimerization of the organolithium reagents was the 
treatment of chlorotricyclooctane with lithium naphthalen- 
ide5 a t  a low temperature. The treatment of la with lithi- 
um naphthalenide in T H F  a t  - 7 8 O ,  followed by neutraliza- 
tion with DzO, generates syn-3-deuterio 2a and anti-3-deu- 
terio 2b in a ratio of >100:1 (Table I). Since this high ratio 
of syn-3-deuterio to anti-3-deuterio could be the result of 
anti radical 3 coupling more rapidly with lithium 
naphthalenide than syn radical 4, due to steric hindrance 
to approach of naphthalene radical anion, coupling prod- 
ucts were searched for very carefully and none ( < O . l % )  de- 
tected. The results of lithium naphthalenide treatment not 
only provide insight into the chemistry of tricyclooctyl rad- 


